常微分方程概念

更新时间:

  1、凡含有参数,未知函数和未知函数导数 (或微分) 的方程,称为微分方程,有时简称为方程,未知函数是一元函数的微分方程称作常微分方程,未知数是多元函数的微分方程称作偏微分方程,微分方程中出现的未知函数最高阶导数的阶数,称为微分方程的阶,定义式如下: F(x, y, y¢, ...., y(n)) = 0

  2、任何代入微分方程后使其成为恒等式的函数,都叫做该方程的解.若微分方程的解中含有任意常数的个数与方程的阶数相同,且任意常数之间不能合并,则称此解为该方程的通解(或一般解),当通解中的各任意常数都取特定值时所得到的解,称为方程的特解。

  3、一般地说,n 阶微分方程的解含有n个任意常数。也就是说,微分方程的解中含有任意常数的个数和方程的阶数相同,这种解叫做微分方程的通解。通解构成一个函数族。

  4、如果根据实际问题要求出其中满足某种指定条件的解来,那么求这种解的问题叫做定解问题,对于一个常微分方程的满足定解条件的解叫做特解。对于高阶微分方程可以引入新的未知函数,把它化为多个一阶微分方程组。

标签: 简单 生活 介绍