同角三角函数的基本关系与诱导公式
更新时间:
三角函数倒数关系:tanαcotα=1;sinαcscα=1;cosαsecα=1。
三角函数商数关系:tanα=sinα/cosα;cotα=cosα/sinα。
平方关系:sin²α+cos²α=1;1+tan²α=sec²α;1+cot²α=csc²α。
诱导公式:
公式一:设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα(k∈Z)。
cos(2kπ+α)=cosα(k∈Z)。
tan(2kπ+α)=tanα(k∈Z)。
cot(2kπ+α)=cotα(k∈Z)。
公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα。
cos(π+α)=-cosα。
tan(π+α)=tanα。
cot(π+α)=cotα。
公式三:任意角α与-α的三角函数值之间的关系(利用原函数奇偶性):
sin(-α)=-sinα。
cos(-α)=cosα。
tan(-α)=-tanα。
cot(-α)=-cotα。
与 同角三角函数的基本关系与诱导公式 相关文章
上一篇:
普拉多轮毂的中心孔径cB是多少
下一篇:
吸烟者跑步的好处